Rice University logo
 
 
 

Jason H. Hafner

Associate Professor of Physics and Astronomy and Chemistry

My lab works at the intersection of modern research directions in the physical and biological sciences. On the physical side, the past two decades have seen a strong emphasis on nanometer-scale science and technology, both in the development of new tools to explore nanometer-scale systems and in the novel physical properties that emerge at that scale. On the biological side, there has been a drive toward more quantitative research, including a growing sense that life's complex molecular constituents must be studied as interacting systems rather than in isolation. These trends represent significant challenges and have encouraged interdisciplinary work in the physical and biological sciences. I have directed my lab's research towards scientific questions and technical challenges at this physical/biological interface. I have focused specifically on two areas: Membrane Electrostatics and Biological Nanophotonics. Membrane Electrostatics The biological membrane is the least understood and arguably the most important cellular component since it forms the boundary between the cell and its environment, as well as the boundary for the cell's organelles. These membranes consist of a 2-D sheet of thousands of different types of amphiphilic molecules which are highly mobile in the membrane plane. Since the extreme complexity of natural biological membranes often precludes a fundamental understanding of their physical properties, researchers turn to synthetic phospholipid bilayers as membrane models. These lipid membranes create a complex electrostatic environment due to their high density of charged and dipolar chemical groups and their large variation in dielectric constant between the aqueous and hydrophobic phases. Since electrostatic effects are ubiquitous in biomolecular interactions, it is imperative to understand the membrane's electrostatic environment and how it depends on lipid composition. We have applied the atomic force microscope (AFM) to this research area. We have mapped the surface potential of heterogeneous membranes at nanometer-scale resolution, and measured the dipole potential of lipid membranes. Biological Nanophotonics Gold and silver nanoparticles exhibit strong spectral scattering and absorption peaks at visible wavelengths due to a resonant excitation of their free electrons referred to as a localized surface plasmon resonance (LSPR). While the theoretical basis for this effect was described 100 years ago, research in the field has exploded over the past decade due to new chemical and lithographic methods to produce nanoparticles with controlled shape and tunable plasmon resonances. Our work on biological and biomedical applications of LSPR requires an interdisciplinary approach which includes studies of nanoparticle optical properties (physics), synthesis and surface modification (chemistry), and interactions with biological systems (molecular biology). Our goal is to make fundamental advances in these areas to support the powerful diagnostic and therapeutic biomedical applications of LSPR nanoparticles. In addition, we are developing LSPR-based immunoassays that are needed to measure simultaneous expression levels of many proteins to unravel complex biological networks.

Publications

Halas, N. J.; Lal, S.; Link, S.; Chang, W.-S.; Natelson, D.; Hafner, J. H.; Nordlander, P., A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University, Advanced Materials 2012, 24, 4842-4877.

Nanotechnology 2010, 21, 255503.

Lee, S.; Mayer, K. M.; Hafner, J. H. An Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates.  Analytical Chemistry (2009): 81, 4450-4455.

Parak, W.J.; Javey, A.; Chan, W. C. W.; Khademhosseini, A.; Hafner, J. H.; Kotov, N. A.; Hammond, P. T.; Mulvaney, P.; Hersam, M. C.; Nel, A. E.; Nordlander, P. J.; Sevens, M. M.; Penner, R. M.; Wee A. T. S.; Rogach, A. L.; Willson, C. G.; Schaak, R. E.; Weiss, P. S., Be Critical But Fair, ACS Nano editorial, October 2013.

Nanotechnology 2010, 21, 225102.

Anderson, L. J. E.; Zhen, Y.-R.; Payne, C. M.; Nordlander, P.; Hafner, J. H. Gold Nanobelts as High Confinement Plasmonic Waveguides, Nano Letters 2013, 13 (12), 6256-6261.

Balamurugan, S.; Mayer, K. M.; Lee, S.; Soper, S. A.; Hafner, J. H.; Spivak, D. A. Nanostructure shape effects on response of plasmonic aptamer sensors, Journal of Molecular Recognition 2013, 26 (9), 402-407

Payne, C. M.; Anderson, L. J. E.; Hafner, J. H.; Novel Plasmonic Structures Based on Gold Nanobelts, Journal of Physical Chemistry C 2013, 117 (9), 4734-4739.

Journal of Controlled Release 2010, 144, 151.

ACS Nano 2010, 4, 2109-2123.

Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P.; Plasmonic Nanowires: from waveguiding to Passive and Active Devices, Accounts of Chemical Research 2012, 45 (11), 1887-1895.

J. Phys. Chem. C. 2010, 114, 11127-11132.

Bonnell, D. A.; Buriak, J. M.; Hafner, J. H.; Hammond, P. T.; Hersam, M. C.; Javey, A.; Kotov, N. A.; Nordlander, P.; Parak, W. J.; Rogach, A. L.; Schaak, R. L.; Stevens, M. M.; War, A. T. S.; Willson, C. G.; Weiss, P. S. “Recycling Is Not Always Good: The Dangers of Self Plagiarism.” ACS Nano editorial, Jan 2012.

Hafner, J. H. Sensing and Sensibility, ACS Nano editorial, February 2013.

Hafner, J. H. “Someone Is Going To Pay For This,” ACS Nano editorial, June 2012

Rostro-Kohanloo, B.C.; Bickford, L. R.; Payne, C. M.; Day, E. S.; Anderson, L. J. E.; Zhong, M.; Lee, S.; Mayer, K. M; Zal, T.; Adam, L.; Dinney, C. P. N.; Drezek, R. A.; West, J. L.; Hafner, J. H. Stabilization and Targeting of Surfactant-Synthesized Gold Nanorods. Nanotechnology (2009): 20, 434005.

Wang, C. U.; Arai, Y.; Kim, I.; Jang, W.; Lee, S.; Hafner, J. H.; Jeoung, E.; Jung, D.; Kwon, Y.; Surface-modified Gold Nanorods for Specific Cell Targeting, Journal of the Korean Physical Society 2012, 60 (10), 1700-1707.

Payne, C. M.; Tsentalovich, D. E.; Benoit, D. N.; Anderson, L. J. E.; Guo, W.; Colvin, V. L.; Pasquali, M.; Hafner, J. H., Synthesis and Crystal Structure of Gold Nanobelts. Chemistry of Materials, in press 2014. 

ACS Nano editorial, May 2010.

Biomaterials 2010, 31, (29), 7567-7574.

Lukianova-Hleb, E. Y.; Hanna, E. Y.; Hafner, J. H.; Lapotko, D. O., Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology (2010): 21, 085102

Nanotechnology 2010, 21, 085102.

Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Cipara, A. C.; Ajayan, P. M.; Hafner, J. H.; Ultra-high density gold nanoparticles decorated vertically aligned carbon nanotubes with 3D SERS-active volumes, Advanced Materials 2012, 24 (38), 5261-5266.

ACS Nano 2010, 4, (10), 5513-5514.

Bonnell, D. A.; Buriak, J. M.; Hafner, J. H.; Hammond, P. T.; Hersam, M. C.; Javey, A.; Kotov, N. A.; Nordlander, P.; Parak, W. J.; Rogach, A. L.; Schaak, R. L.; Stevens, M. M.; War, A. T. S.; Willson, C. G.; Weiss, P. S.; “We Take It Personally”, ACS Nano editorial December 2012

Phys. Chem. Chem. Phys. 2010, 12, (38), 12237-12244.

Lee, S.; Anderson, L. J. E.; Payne, C. M.; Hafner, J. H. A Structural Transition in the Surfactant Layer that Surrounds Gold Nanorods Observed by Analytical Surface Enhanced Raman Spectroscopy.  Langmuir, 27 2011: 14748-14756

Anderson, L. J. E.; Payne, C. M.; Zhen, Y.-R.; Nordlander, P. N.; Hafner, J. H. A Tunable Plasmon Resonance in Gold Nanobelts.  Nano Letters, 11 2011: 5034-5037

Tierny, H.L.; Bonnell, D.A.; Buriak, J.M.; Hafner, J.H.; Hammond, P.T.; Rogach, A.L.; Hersam, M.C.; Schaak, R.E.; Javey, A.; Stevens, M.M.; Kotov, N.A.; Wee, A.T.S.; Nordlander, P.; Willson, C.G.; Parak, W.J.; Weiss, P.S. ACS Nano in 2011 and Looking Forward to 2012.  ACS Nano, 5 2011: 9301-9302

Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors.  Chemical Reviews, 111 2011: 3828-3857

Hafner, J. H.; Nordlander, P. N.; Weiss, P. S. Virtual Issue on Plasmonics.  ACS Nano, 5 2011: 4245-4248

Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.  ACS Nano, 2 2008: 687-692

Hleb, E. Y.; Hafner, J. H.; Myers, J. N.; Hanna, E. Y.; Rostro, B. C.; Zhdanok, S. A.; Lapotko, D. O. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles..  Nanomedicine, 3 2008: 647-667

Hleb, E. Y.; Hu, Y.; Drezek, R. A.; Hafner, J. H.; Lapotko, D. O. Photothermal bubbles as optical scattering probes for imaging living cells.  Nanomedicine, 3 2008: 797-812

Yang, Y.; Mayer, K. M.; Wickremasinghe, N. S.; Hafner, J. H. Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy.  Biophysical Journal, 95 2008: 5193-5199

Nehl, C. L.; Hafner, J. H. Shape-dependent plasmon resonances of gold nanoparticles.  Journal of Materials Chemistry, 18 2008: 2415-2419

F. Hao, C. L. Nehl, J. H. Hafner, P. Nordlander Plasmon Resonances of a Gold Nanostar.  Nano Letters, 7 2007: 729-732

Y. Yang, K. M. Mayer, J. H. Hafner Quantitative Membrane Electrostatics with the Atomic Force Microscope.  Biophysical Journal, 92 2007: 1-9

Hafner Lab
Hafner Lab
PHYS102x on edX
Hafner Lab

  • B.S. Physics (1993) Trinity University
  • M.A. Physics (1996) Rice University
  • Ph.D. Physics (1998) Rice University
  • Department of Chemistry
  • Rice Quantum Institute
  • Scientia
  • Smalley Institute for Nanoscale Science and Technology
  • Biophysics, Nanoscience
Email: hafner@rice.edu
Phone:
Office: Lab: Brockman Hall for Physics , 390