Rice University logo
 
 
 

James M. Tour

T. T. and W. F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering and of Computer Science

Single wall carbon nanotubes (SWCNTs) have many interesting properties.  In the past few years much interest has been generated in the medical field as to the possibility of using SWCNTs or functionalized SWCNTs to carry various payloads into organisms to produce biological effects.  These payloads could be drugs, sensors, visualization aids, or combinations of these and more.  The term “nanovector” has been coined to describe nanoscale particles used for such medicinal purposes.  This is an area of rapidly growing research within our group, and we have expanded the reach of the project from SWCNTs to ultra-short SWCNTs (US-SWCNTs) and now hydrophillic carbon clusters (HCCs). Representative publications include Lucente-Schultz, R. M.; Moore, V. C.; Leonard, A. D.; Price, B. K.; Kosynkin, D. V.; Lu, M.; Partha, R.; Conyers, J. L.; Tour, J. M. “Antioxidant Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 2009, 131, 3934-3941; Shi, X.; Sitharaman, B.; Pham, Q. P.; Spicer, P. P.; Hudson, J. L.; Wilson, L. J.; Tour, J. M.; Raphael, R. M.; Mikos, A. G. “In Vitro Cytotoxicity of Single-Walled Nanotube/Biodegradable Polymer Nanocomposites,” J. Biomed. Mater. Res. A 2008, 813-823; and Tasciotti, E.; Liu, X.; Bhavane, R.; Plant, K.; Leonard, A. D.; Price, B. K.; Cheng, M. M.-C.; Decuzzi, P.; Tour, J. M..; Robertson, F.; Ferrari, M. “Multistage Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications,” Nature Nanotech. 2008, 3, 151-157; and Berlin, J. M.; Leonard, A. D.; Pham, T. T.; Sano, D.; Marcano, D. C.; Yan, S.; Fiorentino, S.; Milas, Z. L.; Kosynkin, D. V.; Price, B. K.; Lucente-Schultz, R. M.; Wen, X.; Raso, M. G.; Craig, S. L.; Tran, H. T.; Myers, J. N.; Tour, J. M. “Effective Drug Delivery, In Vitro and In Vivo, by Carbon-Based Nanovectors Noncovalently Loaded with Unmodified Paclitaxel,” ACS Nano 2010, 4, 4621-4636. These projects are funded by the Army Research Office and the Alliance for Nanohealth.

Our group works in a wide variety of fields of nanotechnology including molecular electronics, nanomaterials, nanohealth and nanomachines.  Applications include using carbonaceous materials for hydrogen storage (for green-powered cars and trucks); polymer composites containing nanomaterials that can be used as materials of construction for defense applications; the synthesis and tracking of nanovehicles; the synthesis of graphene and graphene nanoribbons, and the applications of these materials in composites, electronic devices and in downhole oilfield fluids; and in medical treatments for diabetes, head traumas, spinal cord injuries, cancer and other diseases.

This research, which had been funded by The Robert A. Welch Foundation and now funded by the National Science Foundation, through the Penn State Center for Nanoscience and a NIRT at Rice, is focused on the synthesis of nanomachines such as nanocars, nanotrucks, motorized nanocars, and other machines that can roll on surfaces and do work at the nanoscale. The synthesis of the first nanocar took almost 10 years to complete, and the imaging of the nanocars moving on a surface by our Rice collaborator Prof. Kevin Kelly, was almost as difficult yet luckily did not take as long. This work has opened up a plethora of opportunities to design and synthesis new nanomachines. For representative publications see: Vives, G.; Kang, J.; Kelly, K. F.; Tour, J. M. “Molecular Machinery: Synthesis of a Nanodragster,” Org. Lett. 2009, 11, 5602-5605; Claytor, K.; Khatua, S.; Guerrero, J.; Tcherniak, A.; Tour, J. M.; Link, S. “Accurately Determining Single Molecule Trajectories of Molecular Motion on Surfaces, “ J. Chem. Phys. 2009, 130, 164710-1-9; Khatua, S.; Guerrero, J. M.; Claytor, K.; Vives, G.; Kolomeisky, A. B.; Tour, J. M.; Link, S. “Monitoring of Individual Nanocars on Glass,” ACS Nano 2009, 3, 351-356; Vives, G.; Tour, J. M. “Synthesis of Single-Molecule Nanocars,” Acc. Chem. Res. 2009, 42, 473-487; Vives, G.; Tour, J. M. “Synthesis of a Nanocar with Organometallic Wheels,” Tetrahedron Lett. 2009, 50, 1427-1430; Sasaki, T.; Guerrero, G.; Leonard, A. D.; Tour, J. M. “Nanotrains and Self-Assembled Two-Dimensional Arrays Built from Carboranes Linked by Hydrogen Bonding of Dipyridones” Nano Res. 2008, 1, 412-419; Sasaki, T.; Guerrero, J. M.; Tour, J. M. “The Assembly Line: Self-Assembling Nanocars,” Tetrahedron, 2008, 64, 8522-8529; kimov, A. V.; Nemukhin, A. V.; Moskovsky, A. A.; Kolomeisky, A. B.; Tour, J. M. “Molecular Dynamics of Surface-Moving Thermally Driven Nanocars” J. Chem. Theory Comput. 2008, 4, 652-656; Sasaki, T.; Osgood, A. J.; Kiappes, J. L.; Kelly, K. F.; Tour, J. M. “Synthesis of a Porphyrin-Fullerene Pinwheel,” Org. Lett. 2008, 10, 1377-1380; Sasaki, T.; Tour, J. M. “Synthesis of a New Photoactive Nanovehicle: Nanoworm,” Org. Lett. 2008, 10, 897-900; Sasaki, T.; Osgood, A. J.; Alemany, L. B.; Kelly, K. F.; Tour, J. M. “Synthesis of a Nanocar with an Angled Chassis. Towards Circling Movement,” Org Lett. 2008, 10, 229-232; Morin, J.-F.; Sasaki, T.; Shirai, Y.; Guerrero, J. M.; Tour, J. M. “Synthetic Routes toward Carborane-Wheeled Nanocars,” J. Org. Chem. 2007, 72, 9481-9490; Shirai, Y.; Morin, J.-F.; Sasaki, T.; Guerrero, J.; Tour, J. M. “Recent Progress on Nanovehicles,” Chem. Soc. Rev. 2006, 35, 1043-1055; Morin, J.-F., Shirai, Y.; Tour, J. M. “En Route to a Motorized Nanocar,” Org. Lett. 2006, 8, 1713-1716; Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Alemany, L. B.; Sasaki, T.; Morin, J.-F.; Guerrero, J.; Kelly, K. F.; Tour, J. M. “Surface-Rolling Molecules,” J. Am. Chem. Soc. 2006, 128, 4854-4864; and Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. “Directional Control in Thermally Driven Single-Molecule Nanocars,” Nano Lett. 2005, 5, 2330-2334. This publication was the most accessed paper of all papers published by the American Chemical Society in 2005.

Other active projects in the Tour group include “Cloning Single Wall Carbon Nanotubes for Hydrogen Storage” funded by the Department of Energy (Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R. Simpson, L. J.; O’Neill, K. J.; Parilla, P. A.; Heben, M. J., Pasquali, M.; Kittrell, C.; Tour, J. M. “Nanoengineered Carbon Scaffolds for Hydrogen Storage,” J. Am. Chem. Soc. 2009, 131, 723-738); “Light-Weight, Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructures” funded by the Air Force Office of Scientific Research (based on furthering the results from the following paper: Higginbotham, A. L.; Stephenson, J. J.; Smith, R. J.; Killips, D. S.; Kempel, L. C.; Tour, J. M., “Tunable Permittivity of Polymer Composites through Incremental Blending of Raw and Functionalized Single-Wall Carbon Nanotubes,” J. Phys. Chem. B. 2007, 111, 17751-17754); a University of California at Berkeley MURI funded by the ONR to develop graphene-based devices; and the Advanced Energy Consortium-funded project “Nanoreporters” in which we will use functionalized carbon nanomaterials to help determine compositions downhole in oil wells; and a project funded by MI-SWACO in Houston to develop graphene formulations useful in drilling fluids.

This educational outreach project involved the synthesis of molecules that resemble people. Animated videos featuring these characters and others from the world of NanoPut have been used as educational tools for outreach projects intended to bring more people into the sciences. With SciRave/SciJam, the group seeks to demonstrate the utility of communal recreation, through the dancers and the observers, afforded by freely available packages through web-based downloads onto school-based or home computers. The SciRave/SciJam experience will be coupled through lyrics to key fundamentals that are learned during classroom study. Using a modern genre in which students are familiar, the long-regarded dovetailing of music and dance with education will be recreated. We expect to bring more students into the sciences by illustrating the fun and excitement of chemistry via animation and fun characters. Funding was provided by a SGER grant through the NSF, which has ended. Partial funding of this project was through the NSF and its funding of the CBEN here at Rice. Partial funding was also provided by NASA through the URETI TiiMS project. Additional funding has been provided by the NSF through a NIRT. The concept is Copyright James M. Tour 2006.

Project Summary: The primary objective of this project is to build surface-rolling nanomachines (called nanocars) that can convert optical energy inputs into controlled translational motion on a surface as monitored through single-molecule optical imaging techniques.  This will be done by uniting the synthetic expertise of the PI, Tour, with the complementary optical imaging and measurement expertise of the co-PIs, Link and Marti, to propel the field of nanomachine development through simplified imaging and tracking methods.  Imaging and tracking is currently the major slow step in nanomachine development and we hope to overcome this barrier through the combined expertise and approach here. 

Intellectual Merit and Broader Impact:  The movement of objects at the nano-level generally remains painstakingly difficult. Nanomanipulators are often 8–9 orders of magnitude larger than the individual nano-entity that they are intended to manipulate, and they only manipulate one nano-sized entity at a time. Following biology’s lead, there may be a better way to manipulate nano-sized objects by using machines that are close in size to the entities that need manipulation. For example, enzymes can be viewed as nature’s nanomachines as they control the transport and placement of molecular-sized entities for the construction of higher order structures. As nature often propels the nanoscale transporters using gross fields of influence, i.e. blood flow made possible by the heart, we too may find that gross fields, such as electric field gradients, are the optimal way to manipulate nano-sized cargo carriers. While we are investigating the use of passive transporters, we seek to study active transporters that have imbedded nanomotors that could be actuated by light. Therefore, transport of goods and materials between points is at the heart of all engineering and construction in real-world systems. Just as biological systems survive by nanometer-scale transport using molecular-sized entities, as we delve into the arena of the nano-sized world, it beckons that we learn to manipulate and transport nanometer-scale materials, and particularly upon surfaces under ambient conditions. Through this work, students and post doctoral associates will be trained in organic synthesis and the development of new imaging and tracking techniques, while propelling the burgeoning field of nanomachine development. 

To promote science educational outreach efforts nationally and internationally through the NSF's broader educational goals of bringing new scientific concepts to the masses, we are using the Internet as a medium for the dissemination of Dance Dance Revolution (DDR) and Guitar Hero (GH) packages that showcase grades 6-8 science curricula (Earth Science, Life Science and Physical Science, respectively) through communal games while particularly targeting broader ages 9-15, the precise age range where interest in science is often lost. Coordination with professionals in the Cognitive Science Department at Rice University will provide critical efficacy evaluations.  Music and dance have been tools of learning since ancient times.  In the more recent past, music was used for television-based education throughout the 1960s and 70s; science concepts were often translated by “singing to the bouncing ball,” thereby highlighting fundamental principles through lyrics.  Here, fundamental science concepts from science text books are converted into modern lyrics that are then used to formulate DDR and GH music and step charts via StepMania and Jamming packages.  We seek to demonstrate the utility of communal recreation, through the dancers and the observers (the latter can observe the scrolling lyrics), and afforded by freely available packages through web-based downloads onto school or home computers.  The SciRave/SciJam experience will be coupled through lyrics to highlight fundamentals that are learned during classroom study.  Using a modern genre in which students are familiar, the long-regarded dovetailing of music and dance with education will be recreated.  The downloads can be accessed at www.scirave.org and this initial program will be augmented with the funds here.  The proposed effort builds upon our successful NanoKids introduction of fundamental chemistry, physics, and biology concepts into middle schools that was done over a period of several years and used with over 15,000 children throughout the country that specifically targeted at-risk and underrepresented student groups.  See: http://nanokids.rice.edu/.

Publications arising from this project include: Vives, G.; Guerrero, J. M.; Godoy, J.; Khatua, S.; Wang, Y.-P.; Kiappes, J. L.; Link, S.; Tour, J. M. “Synthesis of Fluorescent Dye-Tagged Nanomachines for Single-Molecule Fluorescence Spectroscopy,” J. Org. Chem. 2010, 75, 6631–6643.

Our group has participated in the vigorous growth of the graphene research field with a number of papers funded by different agencies. We have developed methods of making graphene nanoribbons (GNRs) from multi-walled carbon nanotubes (MWCNTs) and have rapidly expanded this area of research. New projects include the use of graphene in drilling fluids funded by M-I-SWACO. The following papers are representative: Zhu, Y.; Higginbotham, A. L.; Tour, J. M. “Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons,” Chem. Mater. 2009, 21, 5284-5291; Hamilton, C. E.; Lomeda, J. R.; Sun, Z. ; Tour, J. M.; Barron, A. R. “High-Yield Organic Dispersions of Graphene,” Nano Lett. 2009, 9, 3460-3462; Zhang, Z.; Sun, Z.; Yao, J.; Kosynkin, D. V.; Tour, J. M. “Transforming Carbon Nanotube Devices into Nanoribbon Devices,” J. Am. Chem. Soc. 2009, 131, 13460-13463; Price, B. P.; Lomeda, J.; Tour, J. M. “Aggressively Oxidized Ultra-Short Single-Walled Carbon Nanotubes Having Oxidized Sidewalls,” Chem. Mater. 2009, 21, 3917-3923; Jin, Z.; Lomeda, J. R.; Price, B. P.; Lu, W.; Zhu, Y.; Tour, J. M. “Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets” Chem. Mater. 2009, 21, 3045-3047; Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons,” Nature 2009, 458, 872-826; Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-H.; Tour, J. M. “Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets,” J. Am. Chem. Soc. 2008, 130, 16201-16206.

Carbon nanotubes come in lots of diameters and types, and our goal was to take a pure sample of just one type and duplicate it in large quantities. This project, which was started by the late Rick Smalley, was intent on using nanotechnology to eventually solve the world’s energy problems; we knew we needed to find a way to make large quantities of pure nanotubes of a particular type in order to re-wire power grids and make electrical energy widely available for future needs. First discovered just 15 years ago, single-walled carbon nanotubes (SWNTs) are molecules of pure carbon with many unique properties. Smaller in diameter than a virus, nanotubes are about 100 times stronger than steel, weigh about one-sixth as much and are among the world’s best electrical conductors and semi-conductors. There are dozens of types of SWNTs, each with a characteristic atomic arrangement. These variations, though slight, can lead to drastically different properties: Some nanotubes are like metals, and others are semiconductors. While materials scientists are anxious to use SWNTs in everything from bacteria-sized computer chips to geostationary space elevators, most applications require pure compounds. Since all nanotube production methods, including the industrial-scale system Smalley invented in the 1990s, create a variety of 80-odd types, the challenge of making mass quantities of pure tubes, which Smalley referred to as “SWNT amplification” is one of the major, unachieved goals of nanoscience. Rick envisioned a revolutionary system like PCR (polymerase chain reaction), where very small samples could be exponentially amplified. We’re not there yet. Our demonstration involves single nanotubes, and our yields are still very low, but the amplified growth route is demonstrated. The nanotube seeds are about 200 nanometers long and one nanometer wide, length-to-diameter dimensions roughly equal to a 16-foot garden house. After cutting, the seeds underwent a series of chemical modifications. Bits of iron were attached at each end, and a polymer wrapper was added that allowed the seeds to stick to a smooth piece of silicon oxide. After burning away the polymer and impurities, the seeds were placed inside a pressure-controlled furnace filled with ethylene gas. With the iron acting as a catalyst, the seeds grew spontaneously from both ends, growing to more than 30 times their initial length; imagine that 16-foot water hose growing by more than 500 feet in just a few minutes. CNL’s team has yet to prove that the added growth has the same atomic architecture, known as “chirality,” of the seeds. However, the added growth had the same diameter as the original seed, which suggests that the methodology is successful. The publication of the work to date, funded by DARPA and the Dept. of Energy, is: Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R., Jr., Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. “Single Wall Carbon Nanotube Amplification: En Route to a Type-Specific Growth Mechanism,” J. Am. Chem. Soc. 2006, 128, 15824-15829.This project is concerned with the production of new flame retardant materials for use in commercial aircraft to give passengers of a survivable crash additional time to get out of the aircraft before they succumb to deadly gases and smoke. This project was funded by the Federal Aviation Administration and ended this year. Representative publications are: Morgan, A. B.; Jurs, J.; Stephenson, J.; Tour, J. M., “Flame Retardant Materials: Non-Halogenated Additives from Brominated Starting Materials and Inherently Low-Flammability Polymers,” in Encyclopedia of Chemical Processing, Lee, S., Ed.; Taylor & Francis, Inc; New York, 2005; pp.1879-1895 and Stephenson, J. J.; Jurs, J. L.; Tour, J. M. “Vinyl Bisphenol C for Flame Retardant Polymers,” Proceedings of the Society for the Advancement of Material and Process Engineering, Long Beach 2004 Vol. 49.Single wall carbon nanotubes (SWNTs) have many interesting properties. In the past few years much interest has been generated in the medical field as to the possibility of using SWNTs or functionalized SWNTs to carry various payloads into organisms to produce biological effects. These payloads could be drugs, sensors, visualization aids, or combinations of these and more. The term “nanovector” has been coined to describe nanoscale particles used for such medicinal purposes. This is an area of rapidly growing research within our group (see Jared Lee Hudson’s thesis “Development of New Techniques for Functionalizing Single-Wall Carbon Nanotubes for Composite and Biological Systems,” Rice University, 2006). Further results will be submitted for publication shortly.

Publications

App. Phys. Lett2012101, 142402-1-5. DOI:http://dx.doi.org/10.1063/1.4755840

Nano Lett.201313, 72?78. http://dx.doi.org/10.1021/nl3034976

Jin, Z.; Lomeda, J. R.; Price, B. P.; Lu, W.; Zhu, Y.; Tour, J. M. “Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets” Chem. Mater. 2009, 21, 3045-3047.

Alvarez, N. T.; Pint, C. L.; Hauge, R. H.; Tour, J. M. “Abrasion as a Catalyst Deposition Technique for Carbon Nanotube Growth,” J. Am. Chem. Soc. 2009, 131, 15041-15048.

Claytor, K.; Khatua, S.; Guerrero, J.; Tcherniak, A.; Tour, J. M.; Link, S. “Accurately Determining Single Molecule Trajectories of Molecular Motion on Surfaces, “ J. Chem. Phys. 2009, 130, 164710-1-9.

Price, B. P.; Lomeda, J.; Tour, J. M. “Aggressively Oxidized Ultra-Short Single-Walled Carbon Nanotubes Having Oxidized Sidewalls,” Chem. Mater. 2009, 21, 3917-3923.

Jung, M.;  Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.; Pyo, M.; Tour, J. M.; Cho, G. “All Printed and Roll-to-Roll Printable 13.56 MHz Operated 1-bit RF Tag on Plastic Foils,” IEEE Trans. Elect. Dev 1 2010, 57, 571-580.

Lucente-Schultz, R. M.; Moore, V. C.; Leonard, A. D.; Price, B. K.; Kosynkin, D. V.; Lu, M.; Partha, R.; Conyers, J. L.; Tour, J. M. “Antioxidant Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 2009, 131, 3934-3941.

J. Neurosurg. Pediatrics 201311, 575–583.

Villagomez, C. J; Sasaki, T.; Tour, J. M.; Grill, L. “Bottom-up Assembly of Molecular Wagons on a Surface,” J. Am. Chem. Soc. 2010, 132, 16848–16854.

J. Phys. Chem. B 2013,117, 343?354. http://dx.doi.org/10.1021/jp305302y

Nature Commun20134:2943, 1-6. http://dx.doi.org/10.1038/ncomms3943

He, T.; Corley, D. A.; Lu, M.; Di Spigna, N. H.; He, J.; Nackashi, D. P.; Franzon, P. D.; Tour, J. M. “Controllable Molecular Modulation of Conductivity in Silicon-Based Devices,” J. Am. Chem. Soc. 2009, 131, 10023-10030.

Vasudevan, S.; Kapur, N.; He, T. Neurock, M.; Tour, J. M.; Ghosh, A. W. “Controlling Transistor Threshold Voltages Using Molecular Dipoles,” J. Appl. Phys. 2009, 105, 093703-1-4.

Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. M. “Corrugation of Chemically Converted Graphene Monolayers on SiO2,” ACS Nano 2010, 4, 3095-3102.

Zhu, Y.; Higginbotham, A. L.; Tour, J. M. “Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons,” Chem. Mater. 2009, 21, 5284-5291.

Jin, Z.; Nackashi, D.; Lu, W.; Kittrell, C.; Tour, J. M. “Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets,” Chem. Mater. 2010, 22, 5695–5699.

Alvarez, N. T.; Orbaek, A.; Barron, A. R.; Tour, J. M.; Hauge, R. H.  “Dendrimer-Assisted Self-Assembled Monolayer of Iron Nanoparticles for Vertical Array Carbon Nanotube Growth,” ACS App. Mater. Interf. 2010, 2, 15-18.

J. Neurotrauma,201330, 789-796. DOI: http://dx.doi.org/10.1089/neu.2011.2301

Duque, J. G.; Parra-Vasquez, A. N. G.; Behabtu, N.; Green, M. J.; Higginbotham, A. L.; Price, B. K.; Leonard, A. D.; Schmidt, H. K.; Lounis, B.; Tour, J. M.; Doorn, S. K.; Cognet, L.; Pasquali, M. “Diameter-Dependent Solubility of Single-Walled Carbon Nanotubes,” ACS Nano 2010, 4, 3063-3072.

Lu, M.; Nolte, W. M.; He, T.; Corley, D. A.; Tour, J. M. “Direct Covalent Grafting of Polyoxometalates onto Si Surfaces,” Chem. Mater. 2009, 21, 442-446.

ACS Nano 20137, 2773–2780. DOI: http://dx.doi.org/10.1021/nn400207e

Nano Res20136, 138-146. DOI http://dx.doi.org/10.1007/s12274-013-0289-7

Berlin, J. M.; Leonard, A. D.; Pham, T. T.; Sano, D.; Marcano, D. C.; Yan, S.; Fiorentino, S.; Milas, Z. L.; Kosynkin, D. V.; Price, B. K.; Lucente-Schultz, R. M.; Wen, X.; Raso, M. G.; Craig, S. L.; Tran, H. T.; Myers, J. N.; Tour, J. M. “Effective Drug Delivery, In Vitro and In Vivo, by Carbon-Based Nanovectors Noncovalently Loaded with Unmodified Paclitaxel,” ACS Nano 2010, 4, 4621-4636.

Sinitskii, A.; Fursina, A. A.; Kosynkin, D. V.; Higginbotham, A. L.; Natelson, D.; Tour, J. M. “Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes,” App. Phys. Lett. 2009, 95, 253108-1-3.

ACS Appl. Mater. Interfaces 2013,5, 6225–6231. DOI: http://dx.doi.org/10.1021/am401161b

Nanoscale 2014, XXX DOI: http://dx.doi.org/10.1039/C3NR06026H.

Doyle, C. D.; Tour, J. M. “Environmentally Friendly Functionalization of Single-Walled Carbon Nanotubes in Molten Urea,” Carbon 2009, 47, 3215-3218.

Martin, Z. L.; Majumdar, N.; Cabral, M. J.; Gergel-Hackett, N; Camacho-Alanis, F.; Swami, N.; Bean, J. C.; Harriott, L. R.; Yao, Y.; Tour, J. M.; Long D.; Shashidhar, R. “Fabrication and Characterization of Interconnected Nano-Well Molecular Electronic Devices in Cross-Bar Architecture,” IEEE Transact. Nanotech. 2009, 8, 574-581.

Abstracts of Papers, 243rd ACS National Meeting & Exposition, San Diego, CA, United States, March 25-29, 2012 (2012), ORGN-453.

Shirai, Y.; Guerrero, J. M.; Sasaki, T.; He, T.; Ding, H.; Vives, G.; Yu, B.-C.; Cheng, L.; Flatt, A. K.; Taylor, P. G.; Gao, Y.; Tour, J. M. “Fullerene/Thiol-Terminated Molecules,” J. Org. Chem. 2009, 74, 7885-7897.

ACS Nano20137, 2669–2675. DOI: http://dx.doi.org/10.1021/nn400054t

ACS Nano 20137, 10380–10386. DOI: http://dx.doi.org/10.1021/nn404843n

Chen, M.; Kobashi, K.; Chen, B.; Lu, M.; Tour, J. M. “Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules,” Adv. Funct. Mater. 2010, 20, 469-475.F

Sinitskii, A.; Tour, J. M. “Graphene Electronics Unzipped,” IEEE Spectrum, November 2010, 30-33.

Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Tour, J. M.; Koratkar, N. A. “Graphene Nanoribbon Composites,” ACS Nano 2010, 4, 7415-7420.

Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. M. “Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes,” ACS Nano 2010, 4, 5405–5413.

Zhu Y.; Tour, J. M. “Graphene Nanoribbon Thin Films Using Layer-by-Layer Assembly,” Nano Lett. 2010, 10, 4356–4362.

ACS Nano20137, 6001–6006. DOI: http://dx.doi.org/10.1021/nn4016899

ACS Nano20137, 1628–1637. DOI: http://dx.doi.org/10.1021/nn305506s

JEC Composites 201383, 62-63.

Phys. Chem. Chem. Phys. 201315, 2321 – 2327. http://dx.doi.org/10.1039/c2cp44593j

ACS Nano 20137, 576–588. DOI http://dx.doi.org/10.1021/nn3047378

Adv. Mater201325, 6298–6302. http://dx.doi.org/10.1002/adma.201302915

Acc. Chem. Res201346, 2307–2318. DOI: http://dx.doi.org/10.1021/ar300127r

Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. “Graphite Oxide Flame-Retardant Polymer Nanocomposites,” App. Mater. Interfac. 2009, 1, 2256-2261.

Tour, J. M.; Kittrell, C.; Colvin, V. L. “Green Carbon as a Bridge to Renewable Energy,” Nature Mater. 2010, 9, 871-874.

Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. “Growth of Graphene from Solid Carbon Sources,” Nature 2010, 468, 549-552.

J. Am. Chem. Soc2013135, 10755–10762. DOI: http://dx.doi.org/10.1021/ja403915m

Adv. Mater201325, 4789–4793. DOI: http://dx.doi.org/10.1002/adma.201302047

Hamilton, C. E.; Lomeda, J. R.; Sun, Z. ; Tour, J. M.; Barron, A. R. “High-Yield Organic Dispersions of Graphene,” Nano Lett. 2009, 9, 3460-3462.

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. “Improved Synthesis of Graphene Oxide,” ACS Nano 2010, 4, 4806-4814.

ACS Nano20137, 4503–4510. DOI: http://dx.doi.org/10.1021/nn4011544

Khatua, S.; Godoy, J.; Tour, J. M.; Link, S. “Influence of the Substrate on the Mobility of Individual Nanocars,” J. Phys. Chem. Lett. 2010, 1, 3288–3291.

Adv. Funct. Mater2013, XXX. DOI: http://dx.doi.org/10.1002/adfm.201303023

Drezek, R. A.; Tour, J. M. “Is Nanotechnology Too Broad to Practice?” Nature Nanotech. 2010, 5, 168-169

Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. “Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons,” ACS Nano 2010, 4, 1949-1954.

Adv. Mater201325, 4592–4597. DOI: http://dx.doi.org/10.1002/adma.201301065

Shimizu, T.; Haruyama, J.; Marcano, D. C.; Kosynkin, D. V.; Tour, J. M.; Hirose, K.; Suenaga, K. “Large Intrinsic Energy Bandgaps in Annealed Nanotube-Derived Graphene Nanoribbons,” Nature Nanotech. 2011, 6, 45-50.

Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets.  ACS Nano, 5: 4112-4117

Sinitskii, A.; Tour, J. M. “Lithographic Graphitic Memories,” ACS Nano 2009, 3, 2760-2766.

Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M. “Low-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes,”  ACS Nano 2010, 4, 2059-2069.

Yao, J.; Zhong, L.; Natelson, D.; Tour, J. M., “Making Memory Out of Silicon Oxide Filaments,” EE Times Europe, December 2010, p 11.

ACS Nano 20137, 6894–6898. DOI: http://dx.doi.org/10.1021/nn403057t

Tour, J. M.; Zhong, L. “Molecular Computing: Integration of Molecules for Nanocomputing,” In Nanoscale and Bio-Inspired Computing, Mehrnoosh Eshaghian-Wilner, M., Ed. Wiley, 2009, 295-326.

ACS Appl. Mater. Interfaces 20135, 6622–6627. DOI: http://dx.doi.org/10.1021/am4013165

Sinitskii, A.; Tour, J. M. “Patterning Graphene through the Self-Assembled Templates: Toward Periodic Two-Dimensional Graphene Nanostructures with Semiconductor Properties,” J. Am. Chem. Soc. 2010, 132, 14730–14732.

ACS Appl. Mater. Interfaces20135, 7567–7573. DOI: http://dx.doi.org/10.1021/am401859j

Moore, A. M.; Yeganeh, S.; Yao, Y.; Claridge, S. A.; Tour, J. M.; Ratner, M. A.; Weiss, P. S. “Polarizabilities of Adsorbed and Assembled Molecules: Measuring the Conductance through Buried Contacts,” ACS Nano 2010, 4 , 7630-7636.

Hamilton, C. E.; Jay R. Lomeda, J. R.; Sun, Z.; Tour, J. M.; Andrew R. Barron, A. R., “Radical Addition of Perfluorinated Alkyl Iodides to Multi-Layered Graphene and Single-Walled Carbon Nanotubes,” Nano Res. 2010, 3, 138-145.

ACS Appl. Mater. Interfaces, XXX. DOI: http://dx.doi.org/10.1021/am404203y

Salas, E. C.; Sun, Z.; Lüttge, A.; Tour, J. M. “Reduction of Graphene Oxide via Bacterial Respiration,” ACS Nano 2010, 4, 4852-4856.

Yao, J.; Sun, Z.; Zhong, L.; Natelson, D.; Tour, J. M.  “Resistive Switches and Memories from Silicon Oxide,” Nano Lett. 2010, 10, 4105–4110.

Yao, J.; Zhong, L.; Zhang, Z.; He, T.; Jin, Z.; Wheeler, P. J.; Natelson, D.; Tour, J. M. “Resistive Switching in Nanogap Systems on SiO2 Substrates,” Small 2009, 5, 2910-2915.

Electroanalysis 201426, 164-170 DOI: http://dx.doi.org/10.1002/elan.201300254

Sun, Z.; Kohama, S.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. “Soluble Graphene Through Edge-Selective Functionalization,” Nano Res. 2010, 3, 117-125.

Jin, Z.; Sun, Z.; Simpson, L. J.; O’Neill, K. J.; Parilla, P. A.; Li, Y.; Stadie, N. P.; Ahn, C. C.; Kittrell, C.; Tour, J. M. “Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage,” J. Am. Chem. Soc. 2010, 132, 15246-15251.

ACS Nano 20137, 5151–5159. DOI: http://dx.doi.org/10.1021/nn400750n

Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; A. Schmidt, J.; Kesselman, E.; Cohen,  Y.; Talmon, Y.; Tour, J. M.; Pasquali, M.  “Spontaneous High-Concentration Dispersions and Liquid Crystals of Graphene,” Nat. Nanotech. 2010, 5, 406-411.

Chem. Commun.201349, 2613-2615. DOI: http://dx.doi.org/10.1039/c3cc40424b

ACS Nano 2013, 7, 35–41. http://dx.doi.org/10.1021/nn304584a

Vives, G.; Guerrero, J. M.; Godoy, J.; Khatua,S.; Wang, Y.-P.; Kiappes, J. L.; Link, S.; Tour, J. M. “Synthesis of Fluorescent Dye-Tagged Nanomachines for Single-Molecule Fluorescence Spectroscopy,” J. Org. Chem. 2010, 75, 6631–6643.

Godoy, J.; Vives, G.; Tour, J. M. “Synthesis of Highly Fluorescent BODIPY-Based Nanocars,” Org. Lett. 2010, 12, 1464-1467.

Yong, V.; Tour, J. M. “Theoretical Efficiency of Graphene-Based Photovoltaics,” Small 2010, 6, 313-318.

Nano Res201366, 703–711. DOI: http://dx.doi.org/10.1007/s12274-013-0346-2

ACS Nano 20137, 58-64. http://dx.doi.org/10.1021/nn3015882

Chem. Mater201426, 163-171. DOI: http://dx.doi.org/10.1021/cm402179h

Zhang, Z.; Sun, Z.; Yao, J.; Kosynkin, D. V.; Tour, J. M. “Transforming Carbon Nanotube Devices into Nanoribbon Devices,” J. Am. Chem. Soc. 2009, 131, 13460-13463.

Corley, D. A.; He, T.; Tour, J. M. “Two-Terminal Molecular Memories from Solution-Deposited C60 Films in Vertical Silicon Nanogaps,” ACS Nano 2010, 4, 1879-1888.

Yao, J.; Jin, Z.; Zhong, L.; Natelson, D.; Tour, J. M. “Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes,” ACS Nano 2009, 3, 4122-4126.

Scott, G. D.; Keane, Z. K.; Ciszek J.W.; Tour, J. M.; Natelson, D. “Universal Scaling of Nonequilibrium Transport in the Kondo Regime of Single Molecule Transistor Devices,” Phys. Rev. Lett. 2009, 79, 165413-1 - 165413-5.

Dirk, S. M.; Howell, S. W.; Price, B. K.; Fan, H.; Washburn, C.; Wheeler, D. R.; Tour, J. M.; Whiting, J.; Simonson, R. J. “Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix,” J. Nanomater. 2009, 481270-481279.

Nature Commun.20123, 1225. http://dx.doi.org/10.1038/ncomms2234

ACS Nano 20126, 3114–3120. http://dx.doi.org/10.1021/nn2048679.

ACS Nano 20126, 8007–8014. DOI:http://dx.doi.org/10.1021/nn302615f

ACS Appl. Mater. Interfaces 20124, 131–136.

R. Murali, Ed., Graphene Nanoelectronics: From Materials to Circuits, Springer, New York, 2012. DOIhttp://dx.doi.org/10.1007/978-1-4614-0548-1_8

Phys. Rev. B 201285, 205407-1-8. http://dx.doi.org/10.1103/PhysRevB.85.205407.

ACS Nano 20126, 6023-6032. http://dx.doi.org/10.1021/nn301039v

Small 20128, 59–62.

J. Phys. Chem. Lett20123, 2388–2394. http://dx.doi.org/10.1021/jz300968m

ACS Nano20126, 2165–2173. 10.1021/nn204094s

Nano Lett201212, 1210-1217. dx.doi.org/10.1021/nl203512c

ACS Nano20126, 3649-3654.http://dx.doi.org/10.1021/nn301299x

ACS Appl. Mater. Interfaces 20124, 222–227.

Chem. Commun201248, 7931-7933. http://dx.doi.org/10.1039/c2cc32971a

Energy. Environ. Sci20125, 8304-8309. http://dx.doi.org/10.1039/c2ee21574h

Nature Commun20123, 1-8. DOI:http://dx.doi.org/10.1038/ncomms2110

Chem. Commun201248, 5602-5604. http://dx.doi.org/10.1039/C2CC31407J

ACS Nano 20126, 4231–4240. http://dx.doi.org/10.1021/nn300757t

Nature Scientific Reports 20122:242, 1-5. doi: 10.1038/srep00242

Carbon 201250, 3836-3844. http://dx.doi.org/10.1016/j.carbon.2012.04.025

ACS Nano 20126, 9790–9796. http://dx.doi.org/10.1021/nn303328e

App. Phys. Lett2012101, 123104.http://dx.doi.org/10.1063/1.4752724

Adv. Mater201224, 4924–4955. DOI:http://dx.doi.org/10.1002/adma.201202321

ACS Nano 20126, 2497–2505. 10.1021/nn204885f

ACS Nano20126, 8060–8066. DOI: http://dx.doi.org/10.1021/nn302644r

Nature Photonics 20126, 72-73. doi:10.1038/nphoton.2011.349

Appl. Phys. Lett2012100, 103106.http://dx.doi.org/10.1063/1.3692744

J. Am. Chem. Soc. 2012134, 2815-2822.http://dx.doi.org/10.1021/ja211531y

J. Am. Chem. Soc2012134, 11774-11780. http://dx.doi.org/10.1021/ja304471x

ACS Nano 20126, 7842–7849. http://dx.doi.org/10.1021/nn3020147.

ACS Nano 20126, 7615-7623. DOI: http://dx.doi.org/10.1021/nn302745x

ACS Nano20126, 10396–10404. http://dx.doi.org/10.1021/nn304509c

Nano Lett201212, 3711-3715. http://dx.doi.org/10.1021/nl301496r

Macromol. Chem. Phys. 2012213, 1033-1050. DOI: http://dx.doi.org/10.1002/macp.201200001

ACS Nano 20126, 592–597.

ACS Nano 20126, 9110–9117. http://dx.doi.org/10.1021/nn303352k

Wang, Lu; Yu, Jie; Lu, Wei; Kan, Amy T.; Kini, Gautam; Tour, James M.; Wong, Michael S.; Tomson, Mason B. Assessing carbon nanoparticles transport in natural rock materials and their oilfield exploration application.  Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011 2011: PETR-13

Yan, Z.; Sun, Z.; Lu, W.; Yao, J.; Zhu, Y.; Tour, J. M. Controlled Modulation of Electronic Properties of Graphene by Self-Assembled Monolayers on SiO2 Substrates.  ACS Nano, 5 2011: 1535-1540

Peng, Z.; Yan, Z.; Sun, Z.; Tour, J. M. Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel.  ACS Nano, 5 2011: 8241-8247

Berlin, J. M.; Yu, J.; Lu, W.; Walsh, E. E.; Zhang, L.; Zhang, P.; Chen, W.; Kan, A. T.; Wong, M. S.; Tomson, M. B.; Tour, J. M. Engineered Nanoparticles for Hydrocarbon Detection in Oil-field Rocks.  Energy Environ. Sci., 4 2011: 505-509

Sun, Z.; James, D. K.; Tour, J. M. Graphene Chemistry: Synthesis and Manipulation.  J. Phys. Chem. Lett., 2 2011: 2425-2432

Tour, James M. Graphene Synthesis and Applications.  Abstracts, 67th Southwest Regional Meeting of the American Chemical Society, Austin, TX, United States, November 9-12 2011: SWRM-14

Yan, Z.; Peng, Z.; Sun, S.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M. Tour, J. M. Growth of Bilayer Graphene on Insulating Substrates.  ACS Nano, 5 2011: 8187-8192

Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M. Growth of Graphene from Food, Insects, and Waste.  ACS Nano, 5 2011: 7601-7607

Zhu, Y.; Lu, W.; Sun, Z.; Kosynkin, D. V.; Yao, J.; Tour, J. M. High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons.  Chem. Mater., 23 2011: 935-939

Kosynkin, D. V.; Lu, W.; Sinitskii, A.; Pera, G.; Sun, Z.; Tour, J. M. Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor.  ACS Nano, 5 2011: 968-974

Hwang, C.-C.; Jin, Z.; Lu, W.; Sun, Z.; Alemany, L. B.; Lomeda, J. R.; Tour, J. M. In situ Synthesis of Polymer-Modified Mesoporous Carbon CMK-3 Composites for CO2 Sequestration.  ACS Appl. Mater. Interfaces, 3 2011: 4782-4786

Noh, J.; Jung, M.; Jung, K.; Lee, G.; Lim, S.; Kim, D.; Kim, S.; Tour, J. M.; Cho, G. Integrable single walled carbon nanotube (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet.  Org. Electronics, 12 2011: 2185-2191

Ganesan, Y.; Peng, C.; Lu,Y.; Loya, P. E.; Moloney, P.; Barrera, E.; Yakobson, B. I.; Tour, J. M.; Ballarini, R.; Lou, J. Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites.  ACS Appl. Mater. Interfaces, 3 2011: 129-134

Yao, J.; Zhong, L.; Natelson, D.; Tour, J. M. Intrinsic Resistive Switching and Memory Effects in Silicon Oxide.  Appl. Phys., 102 2011: 835-839

Tour, J. M. Is graphene’s future in the hands of the chemist? A commentary.  Materials Today, 14 2011: 454

Shimizu, T.; Haruyama, J.; Marcano, D. C.; Kosynkin, D. V.; Tour, J. M.; Hirose, K.; Suenaga, K. Large Intrinsic Energy Bandgaps in Annealed Nanotube-Derived Graphene Nanoribbons.  Nature Nanotech., 6 2011: 45-50

Dimiev, A.; Kosynkin, D. V.; Sinitskii, A.; Slesarev, A.; Sun, Z.; Tour, J. M. Layer-by-Layer Removal of Graphene for Device Patterning.  Science, 331 2011: 1168-1172

Dan, B.; Behabtu, N.; Martinez, A.; Evans, J. S.; Kosynkin, D. V.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Liquid Crystals of Aqueous, Giant Graphene Oxide Flakes.  Soft Matter, 7 2011: 11154-11159

Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Alex K. Zettl, A. K. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons.  Nano Lett., 11 2011: 3221-3226

Dimiev, A.; Lu, W.; Zeller, K.; Crowgey, B.; Kempel, L. C.; Tour, J. M. Low-Loss, High-Permittivity Composites Made from Graphene Nanoribbons.  ACS Appl. Mater. Interfaces, 3 2011: 4657-4661

Claridge, Shelley A.; Schwartz, Jeffrey J.; Moore, Amanda M.; Yeganeh, Sina; Yao, Yuxing; Tour, James M.; Ratner, Mark A.; Weiss, Paul S. Microwave-modulated scanning tunneling spectroscopy of self-assembled peptides.  Abstracts of Papers, 241st ACS National Meeting & Exposition, Anaheim, CA, United States, March 27-31, 2011 2011: ANYL-136

Lu, Wei; Jie, Yu; Hwang, Chih C.; Wang, Lu; Kini, Gautam; Kan, Amy T.; Wong, Michael S.; Tomson, Mason B.; Tour, James M. Modified carbon black nanoparticles for oilfield applications.  Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011 2011: petr-14

Berlin, J. M.; Pham, T. T.; Sano, D. S.; Mohamedali, K. A.; Marcano, D. C.; Myers, J. N.; Tour, J. M. Noncovalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery.  ACS Nano, 5 2011: 6643-6650

Rao, S. S.; Stesmans, A.; Kosynkin, D. V.; Higginbotham, A.; Tour, J. M. Paramagnetic Centers in Graphene Nanoribbons Prepared from Longitudinal Unzipping of Carbon Nanotubes.  New J. Phys., 13 2011: 113004-1-0

Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes.  ACS Nano, 8 2011: 6472-6479

Yao, J.; Zhong, L.; Natelson, D.; Tour, J. M. Silicon Oxide: A Non-innocent Surface for Molecular Electronics and Nanoelectronics Studies.  J. Am. Chem. Soc., 133 2011: 941-948

Tao, C; Jiao, L.; Yazyev, O. V.; Chen, Y.-C.; Feng, J.; Zhang, X.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G.; Dai, H.; Crommie, M. F. Spatially Resolving Edge States of Chiral Graphene Nanoribbons.  Nature Phys., 7 2011: 616-620

Wang, Lin-Yung; Khatua, Saumyakanti; Chiang, Pinn-Tsong; Chu, Pin-Lei E.; Tour, James M.; Link, Stephan Study of the mobilities of selected nanomachines.  Abstracts, 67th Southwest Regional Meeting of the American Chemical Society, Austin, TX, United States, November 9-12 2011: SWRM-605

Pint, C. L.; Sun, Z.; Moghazy, S.; Xu, Y.-Q.; Tour, J. M.; Hauge, R. H. Supergrowth of Nitrogen-Doped Single-Walled Carbon Nanotube Arrays: Active Species, Dopant Characterization, and Doped/Undoped Heterojunctions.  ACS Nano, 5 2011: 6925-6934

Pint, C. L.; Nicholas, N. W.; Xu, S.; Sun, Z.; Tour, J. M.; Schmidt, H. K.; Gordon, R. G.; Hauge, R. H. Three Dimensional Solid-State Supercapacitors from Aligned Single-Walled Carbon Nanotube Array Templates.  Carbon, 49 2011: 4890-4897

Godoy, J.; Vives, G.; Tour, J. M. Toward Chemical Propulsion: Synthesis of ROMP-Propelled Nanocars.  ACS Nano, 5 2011: 85-90

Sun, Z.; Pint, C. L.; Marcano, D. C.; Zhang, C.; Yao, J.; Ruan, G.; Yan, Z.; Zhu, Yu.; Hauge, R. H.; Tour, J. M. Towards Hybrid Superlattices in Graphene.  Nature Commun., 2:559 2011: 1-5

Alvarez, N. T.; Li, F.; Pint, C. L.; Mayo, J. T.; Fisher, E. Z.; Tour, J. M.; Colvin, V. L.; Hauge, R. H. Uniform Large Diameter Carbon Nanotubes in Vertical Arrays from Premade Near-Monodisperse Nanoparticles.  Chem. Mater., 23 2011: 3466-3475

Rao, S. S.; Stesmans, A.; Keunen, K.; Kosynkin, D. V.; A. Higginbotham; Tour, J. M. Unzipped Graphene Nanoribbons as Sensitive O2 Sensors: Electron Spin Resonance Probing and Dissociation Kinetics.  App. Phys. Lett., 98 2011: 083116-1-3

Ward, D. R.; Corley, D. A.; Tour, J. M.; Natelson, D. Vibrational and Electronic Heating in Nanoscale Junctions.  Nature Nanotech., 6 2011: 33-38

Li, Y.; Chen, M.; Chen, B.; Tour, J. M. “Fluoride-Decorated Oxides for Large Enhancement of Conductivity in Intrinsic Silicon Nanowires,” J. Nanosci. Nanotech. 2009, 9, 6470-6477

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons,” Nature 2009, 458, 872-826.

Khatua, S.; Guerrero, J. M.; Claytor, K.; Vives, G.; Kolomeisky, A. B.; Tour, J. M.; Link, S. “Monitoring of Individual Nanocars on Glass,” ACS Nano 2009, 3, 351-356.

Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R. Simpson, L. J.; O’Neill, K. J.; Parilla, P. A.; Heben, M. J., Pasquali, M.; Kittrell, C.; Tour, J. M. “Nanoengineered Carbon Scaffolds for Hydrogen Storage,” J. Am. Chem. Soc. 2009, 131, 723-738.

Vives, G.; Tour, J. M. “Synthesis of Single-Molecule Nanocars,” Acc. Chem. Res. 2009, 42, 473-487.

Vives, G.; Kang, J.; Kelly, K. F.; Tour, J. M. “Molecular Machinery: Synthesis of a Nanodragster,” Org. Lett. 2009, 11, 5602-5605.

Shawn M. Dirk, Stephen W. Howell, B. Katherine Price, Hongyou Fan, Cody Washburn, David R. Wheeler, James M. Tour, Joshua Whiting, and R. Joseph Simonson Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix.  Journal of Nanomaterials, 2009 2009: 481270

Higginbotham, A. L.; Moloney, P. G.; Waid, M. C.; Duque, J. G.; Kittrell, C.; Schmidt, H. K.; Stephenson, J. J.; Arepalli, S.; Yowell, L. L.; Tour, J. M. Carbon Nanotube Composite Curing Through Absorption of Microwave Radiation.  Composites Sci. Tech.,, 68 2008: 3087-3092

Chen, B., Lu, M.; Flatt, A. K.; Maya, F.; Tour, J. M. Chemical Reactions in Monolayer Aromatic Films on Silicon Surfaces.  Chem. Mater., 20 2008: 61-64

Vasudevan, S.; Kapur, N.; He, T.; Neurock, M.; Tour, J. M.; Ghosh, A. W. Controlling Transistor Threshold Voltages Using Molecular Dipoles.  Cond. Matt. 2008: 1-5

Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-H.; Tour, J. M. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets.  J. Am. Chem. Soc., 130 2008: 16201-16206

Li, Y.; Sinitskii, A.; Tour, J. M. Electronic Two-Terminal Bistable Graphitic Memories.  Nature Mater., 7 2008: 966-971

Demirkan, K.; Mathew, A.; Weiland, C.; Yao, Y.; Rawlett, A. M.; Tour, J. M.; Opila, R. L. Energy Level Alignment at Organic Semiconductor/Metal Interfaces: Effect of Polar Self-Assembled Monolayers at the Interface.  J. Chem. Phys., 128 2008: 074705-1-5

Yao, J.; Zhong, L.; Natelson, D.; Tour, J. M. Etching-Dependent Reproducible Memory Switching in Vertical SiO2 Structures.  App. Phys. Lett., 93 2008: 253101

Risko, C.; Zangmeister, C. D.; Yao, Y.; Marks, T. J.; Tour, J. M.; Ratner, M. A.; van Zee, R. D. Experimental and Theoretical Identification of Valence Energy Levels and Interface Dipole Trends for a Family of (Oligo)Phenylene-ethynylenethiols Adsorbed on Gold.  J. Phys . Chem. C, 112 2008: 13215-13225

Tasciotti, E.; Liu, X.; Bhavane, R.; Plant, K.; Leonard, A. D.; Price, B. K.; Cheng, M. M.-C.; Decuzzi, P.; Tour, J. M..; Robertson, F.; Ferrari, M. Multistage Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications.  Nature Nanotech., 3 2008: 151-157

Sasaki, T.; Guerrero, G.; Leonard, A. D.; Tour, J. M. Nanotrains and Self-Assembled Two-Dimensional Arrays Built from Carboranes Linked by Hydrogen Bonding of Dipyridones.  Nano Res., 1 2008: 412-419

Kobashi, K., Lomeda, J.; Chen, Z.; Azad, S.; Hwang, W.-F.; Tour, J. M. Preparation of Single-Walled Carbon Nanotubes-Induced Poly(p-Oxybenzoyl) Crystals.  J. Polym. Sci. Part A, Polym. Chem., 46 2008: 1265-1277

He, T.; Lu, M.; Yao, J.; He, J.; Chen, B.; Di Spigna, N. H.; Nackashi, D. P.; Franzon, P. D.; Tour, J. M. Reversible Modulation of Conductance in Silicon Devices via UV/Visible-Light Irradiation.  Adv. Mater., 20 2008: 4541-4546

Kumar, A. S.; Ye, T. Takami, T.; Yu, B.-C.; Flatt, A. K.; Tour, J. M.; Weiss, P. S. Reversible Photo-Switching of Single Molecules in Controlled Nanoscale Environments.  Nano Lett., 8 2008: 1644-1648

Alvarez, N. T.; Kittrell, C.; Schmidt, H. K.; Hauge, R. H.; Engel, P. S.; Tour, J. M. Selective Photochemical Functionalization of Surfactant-Dispersed Single Wall Carbon Nanotubes in Water.  J. Am Chem Soc., 130 2008: 14227-14233

He, T.; Ding, H.; Peor, N.; Lu, M.; Corley, D.; Chen, B.; Ofir, Y.; Gao, Y.; Yitzchaik, S.; Tour, J. M. Silicon/Molecule Interfacial Electronic Modifications.  J. Am Chem Soc., 130 2008: 1699-1710

Ward, D. R.; Halas, N. J.; Ciszek, J. W.; Tour, J. M.; Wu, Y.; Nordlander, P.; Natelson, D. Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions.  Nano Lett., 8 2008: 919-924

Doyle, C. D.; Rocha, J.-D. R.; Weisman, R. B.; Tour, J. M. Structure-Dependent Reactivity of Semiconducting Single-Walled Carbon Nanotubes with Benzenediazonium Salts.  J. Am. Chem. Soc., 130 2008: 6795-6800

Lu, M.; He, T.; Tour, J. M. Surface Grafting of Ferrocene-Containing Triazene Derivatives on Si(100).  Chem. Mater., 20 2008: 7352-7355

Shirai, Y.; Sasaki, T.; Guerrero, J. M.; Yu, B.-C.; Hodge, P.; Tour, J. M. Synthesis and Photoisomerization of Fullerene- and Oligo(phenylene-ethynylene)-Azobenzene Derivatives.  ACSNano, 2 2008: 97-106

Genorio, B.; He, T.; Meden, A.; Polanc, S.; Jamnik, J.; Tour, J. M. Synthesis and Self-Assembly of Thio Derivatives of Calix[4]arene on Noble Metal Surfaces.  Langmuir, 24 2008: 11523-11532

Sasaki, T.; Guerrero, J. M.; Tour, J. M. The Assembly Line: Self-Assembling Nanocars.  Tetrahedron, 64 2008: 8522-8529

Tour, J. M.; He, T. The Fourth Element.  Nature, 453 2008: 42-43

Ajayan, P. M.; Tour, J. M. Nanotube Composites.  Nature, 447 2007: 1066-1068

Tour, J. M. Transition to Organic Materials Science. Passive, Active and Hybrid Nanotechnologies.  J. Org. Chem., 72 2007: 7477-7496

Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao , Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Alemany, L. B.; Sasaki, T.; Morin, J.-F.; Guerrero, J.; Kelly, K. F.; Tour, J. M. Surface-Rolling Molecules.  J. Am. Chem. Soc., 128 2006: 4854-4864

James Tour's Web Site
James M Tour's Web Site

  • B. S. Chemistry (1981) Syracuse University
  • Ph.D. Organic Chemistry (1986) Purdue University
  • Postdoctoral Fellow Organometallic Chemistry (1986-1987) University of Wisconsin
  • NIH Postdoctoral Fellow Organic Chemistry (1987-1988) Stanford University
  • Center for Biological and Environmental Nanotechnology
  • Department of Computer Science
  • Department of Materials Science and NanoEngineering
  • Smalley Institute for Nanoscale Science and Technology
  • Chemistry, Mechanical Engineering, Materials Science, Computer Science, Education
Email: tour@rice.edu
Phone: (713) 348-6246
Office: Dell Butcher Hall, 255